Review Article| Volume 60, P1-7, July 2023

Implantable cardioverter-defibrillator in patients with inherited arrhythmia syndromes: A systematic review

Published:February 28, 2023DOI:


      • Thirty-six articles and 2750 patients with arrhythmia syndromes were reviewed.
      • About 2/3 of the ICDs were implanted in secondary prevention of sudden death.
      • The rate of appropriate and inappropriate therapies was 21% and 20%, respectively.
      • Lead malfunction was the most common non-shock ICD-related complication.



      The potential benefit of implantable cardioverter-defibrillator (ICD) therapy in individuals with inherited arrhythmia syndromes is well known. However, it is not deprived of morbidity, in the form of inappropriate therapies and other ICD-related complications.


      The aim of this systematic review is to estimate the rate of appropriate and inappropriate therapy, as well as other ICD-related complications, in individuals with inherited arrhythmia syndromes.


      A systematic review was performed, regarding appropriate and inappropriate therapy, and other ICD-related complications, in individuals with inherited arrhythmia syndromes (Brugada Syndrome, Catecholaminergic Polymorphic Ventricular Tachycardia, Early Repolarization Syndrome, Long QT Syndrome and Short QT syndrome). Studies were identified by searching published papers in PubMed and Embase up to August 23rd, 2022.


      From data gathered of 36 studies, with a total of 2750 individuals, during a mean follow-up time of 69 months, appropriate therapies occurred in 21% of the individuals and inappropriate therapies in 20% of the individuals. Concerning the other ICD-related complications, 456 complications were observed, amongst 2084 individuals (22%), with the most frequent being lead malfunction (46%), followed by infectious complications (13%).


      ICD-related complications are not uncommon, especially when one considers the exposure time of young individuals. The incidence of inappropriate therapies was 20%, although lower rates were reported in recent publications. S-ICD is an effective alternative to transvenous ICD for sudden death prevention. The decision to implant an ICD should be individualized, taking into account the risk profile of each patient, as well as the possibility of complications.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Heart & Lung: The Journal of Cardiopulmonary and Acute Care
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Nash D.B.
        Assessment on implantable defibrillators and the evidence for primary prevention of sudden cardiac death.
        P and T. 2005; 30: 373
        • Sherrid M.V.
        • Daubert J.P.
        Risks and challenges of implantable cardioverter-defibrillators in young adults.
        Prog Cardiovasc Dis. 2008; 51: 237-263
        • Olde Nordkamp L.R.A.
        • Wilde A.A.M.
        • Tijssen J.G.P.
        • et al.
        The ICD for primary prevention in patients with inherited cardiac diseases: indications, use, and outcome: a comparison with secondary prevention.
        Circul: Arrhythmia Electrophysiol. 2013; 6: 91-100
        • Priori S.G.
        • Blomstrom-Lundqvist C.
        • Mazzanti A.
        • et al.
        2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the ESC.
        Eur Heart J. 2015; 36: 2793-2867l
        • Pedersen S.S.
        • Sears S.F.
        • Burg M.M.
        • Van Den Broek K.C.
        Does ICD indication affect quality of life and levels of distress?.
        PACE - Pacing Clin Electrophysiol. 2009; 32: 153-156
        • Olde Nordkamp L.R.A.
        • Postema P.G.
        • Knops R.E.
        • et al.
        Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: a systematic review and meta-analysis of inappropriate shocks and complications.
        Heart Rhythm. 2016; 13: 443-454
        • Abud A.
        Retrospective analysis of patients with brugada syndrome and implantable cardioverter defibrillator.
        Rev Argentina de Cardiol. 2014; 82: 19-23
        • Bonny A.
        • Talle M.A.
        • Vaugrenard T.
        • Taieb J.
        • Ngantcha M.
        Inappropriate implantable cardioverter-defibrillator shocks in Brugada syndrome: pattern in primary and secondary prevention.
        Indian Pacing Electrophysiol J. 2017; 17: 10-15
        • Horner J.M.
        • Kinoshita M.
        • Webster T.L.
        • Haglund C.M.
        • Friedman P.A.
        • Ackerman M.J.
        Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience.
        Heart Rhythm. 2010; 7: 1616-1622
        • Hwang K.W.
        • Nam G.B.
        • Han J.
        • Kim Y.G.
        • et al.
        Incidence of atrial tachyarrhythmias in patients with early repolarization syndrome: analysis of patients with implantable cardioverter defibrillators.
        Int Heart J. 2017; 58: 43-49
        • Kamakura T.
        • Wada M.
        • Nakajima I.
        • et al.
        Evaluation of the necessity for cardioverter-defibrillator implantation in elderly patients with Brugada syndrome.
        Circul: Arrhythmia Electrophysiol. 2015; 8: 785-791
        • Kharazi A.
        • Emkanjoo Z.
        • Alizadeh A.
        • Nikoo M.H.
        • Jorat M.V.
        • Sadr-Ameli M.A.
        Mid-term follow-up of patients with Brugada syndrome following a cardioverter defibrillator implantation: a single center experience.
        Indian Pacing Electrophysiol J. 2007; 7: 33-39
        • Lee S.
        • Li K.H.C.
        • Zhou J.
        Outcomes in Brugada syndrome patients with implantable cardioverter-defibrillators: insights from the SGLT2 registry.
        Front Physiol. 2020; : 11
        • Makarawate P.
        • Chaosuwannakit N.
        • Vannaprasaht S.
        • Tassaneeyakul W.
        • Sawanyawisuth K.
        Clinical characteristics and treatment outcomes of patients with Brugada syndrome in northeastern Thailand.
        Singapore Med J. 2014; 55: 217-220
        • Mazzanti A.
        • Kanthan A.
        • Monteforte N.
        • et al.
        Novel insight into the natural history of short QT syndrome.
        J Am Coll Cardiol. 2014; 63: 1300-1308
        • Miyake C.Y.
        • Webster G.
        • Czosek R.J.
        • et al.
        Efficacy of implantable cardioverter defibrillators in young patients with catecholaminergic polymorphic ventricular tachycardia: success depends on substrate.
        Circul: Arrhythmia Electrophysiol. 2013; 6: 579-587
        • Miyazaki S.
        • Uchiyama T.
        • Komatsu Y.
        • et al.
        Long-term complications of implantable defibrillator therapy in brugada syndrome.
        Am J Cardiol. 2013; 111: 1448-1451
        • Mönnig G.
        • Köbe J.
        • Löher A.
        • et al.
        Implantable cardioverter-defibrillator therapy in patients with congenital long-QT syndrome: a long-term follow-up.
        Heart Rhythm. 2005; 2: 497-504
        • Conte G.
        • Sieira J.
        • Ciconte G.
        • et al.
        Implantable cardioverter-defibrillator therapy in Brugada syndrome: a 20-year single-center experience.
        J Am Coll Cardiol. 2015; 65: 879-888
        • Rodríguez-Mañero M.
        • De Asmundis C.
        • Sacher F.
        • et al.
        T-Wave oversensing in patients with Brugada syndrome: true bipolar versus integrated bipolar implantable cardioverter defibrillator leads.
        Circul: Arrhythmia Electrophysiol. 2015; 8: 792-798
        • Roses-Noguer F.
        • Jarman J.W.E.
        • Clague J.R.
        • Till J.
        Outcomes of defibrillator therapy in catecholaminergic polymorphic ventricular tachycardia.
        Heart Rhythm. 2014; 11: 58-66
        • Sacher F.
        • Probst V.
        • Maury P.
        • et al.
        Outcome after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: a multicenter study-part 2.
        Circul Am Heart Assoc. 2013; 128: 1739-1747
        • Sarkozy A.
        • Boussy T.
        • Kourgiannides G.
        • et al.
        Long-term follow-up of primary prophylactic implantable cardioverter-defibrillator therapy in Brugada syndrome.
        Eur Heart J. 2007; 28: 334-344
        • Schukro C.
        • Berger T.
        • Stix G.
        • et al.
        Regional prevalence and clinical benefit of implantable cardioverter defibrillators in Brugada syndrome.
        Int J Cardiol. 2010; 144: 191-194
        • Schwartz P.J.
        • Spazzolini C.
        • Priori S.G.
        • et al.
        Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT syndrome implantable cardioverter-defibrillator (LQTS ICD) registry.
        Circul Am Heart Assoc. 2010; 122: 1272-1282
        • Son M.K.
        • Byeon K.
        • Park S.J.
        • et al.
        Prognosis after implantation of cardioverter-defibrillators in Korean patients with Brugada syndrome.
        Yonsei Med J. 2014; 55: 37-45
        • Steven D.
        • Roberts-Thomson K.C.
        • Inada K.
        • et al.
        Long-term follow-up in patients with presumptive brugada syndrome treated with implanted defibrillators.
        J Cardiovasc Electrophysiol. 2011; 22: 1115-1119
        • Sy R.W.
        • Gollob M.H.
        • Klein G.J.
        • et al.
        Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia.
        Heart Rhythm. 2011; 8: 864-871
        • Van Der Werf C.
        • Lieve K.V.
        • Bos J.M.
        • et al.
        Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest.
        Eur. Heart J. 2019; 40: 2953-2961
        • Gonzalez Corcia M.C.
        • Sieira J.
        • Pappaert G.
        • et al.
        Implantable cardioverter-defibrillators in children and adolescents with Brugada syndrome.
        J Am Coll Cardiol. 2018; 71: 148-157
        • Villafañe J.
        • Atallah J.
        • Gollob M.H.
        • et al.
        Long-term follow-up of a pediatric cohort with short QT syndrome.
        J Am Coll Cardiol. 2013; 61: 1183-1191
        • Zienciuk-Krajka A.
        • Sterliński M.
        • Filipecki A.
        • et al.
        Implantable cardioverter-defibrillators in patients with long QT syndrome: a multicentre study.
        Kardiol Pol. 2018; 76: 1687-1696
        • Daoulah A.
        • Alsheikh-Ali A.A.
        • Ocheltree A.H.
        • et al.
        Outcome after implantable cardioverter-defibrillator in patients with Brugada syndrome: the Gulf Brugada syndrome registry.
        J Electrocardiol. 2012; 45: 327-332
        • Dores H.
        • Reis Santos K.
        • Adragão P.
        • et al.
        Long-term prognosis of patients with Brugada syndrome and an implanted cardioverter-defibrillator.
        Rev Port Cardiol. 2015; 34: 395-402
        • Giustetto C.
        • Schimpf R.
        • Mazzanti A.
        • et al.
        Long-term follow-up of patients with short QT syndrome.
        J Am Coll Cardiol. 2011; 58: 587-595
        • Goel A.K.
        • Berger S.
        • Pelech A.
        • Dhala A.
        Implantable cardioverter defibrillator therapy in children with long QT syndrome.
        Pediatr Cardiol. 2004; 25: 370-378
        • Hernandez-Ojeda J.
        • Arbelo E.
        • Borras R.
        • et al.
        Patients with Brugada syndrome and implanted cardioverter-defibrillators: long-term follow-up.
        J Am Coll Cardiol. 2017; 70: 1991-2002
        • Holst A.G.
        • Jensen H.K.
        • Eschen O.
        • et al.
        Low disease prevalence and inappropriate implantable cardioverter defibrillator shock rate in brugada syndrome: a nationwide study.
        Europace. 2012; 14: 1025-1029
        • Shinohara T.
        • Abe I.
        • Hirota K.
        • et al.
        Usefulness of subcutaneous implantable cardioverter‑defibrillator therapy in patients with Brugada syndrome.
        Heart Vessels. 2021; 36: 260-266
        • Casu G.
        • Silva E.
        • Bisbal F.
        • et al.
        Predictors of inappropriate shock in Brugada syndrome patients with a subcutaneous implantable cardiac defibrillator.
        J Cardiovasc Electrophysiol. 2021; 32: 1704-1711
        • Lambiase P.D.
        • Eckardt L.
        • Theuns D.A.
        • et al.
        Evaluation of subcutaneous implantable cardioverter-defibrillator performance in patients with ion channelopathies from the EFFORTLESS cohort and comparison with a meta-analysis of transvenous ICD outcomes.
        Heart Rhythm O2. 2020 Oct 28; 1: 326-335
        • Auricchio A.
        • Sterns L.D.
        • Schloss E.J.
        • et al.
        Performance evaluation of implantable cardioverter-defibrillators with SmartShock technology in patients with inherited arrhythmogenic diseases.
        Int J Cardiol. 2022 Mar 1; 350: 36-40
        • Wilkoff B.L.
        • Fauchier L.
        • Stiles M.K.
        • et al.
        2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing.
        Europace. 2016; 18: 159-183
        • Saarel E.V.
        • Law I.
        • Berul C.I.
        • et al.
        Safety of sports for young patients with implantable cardioverter-defibrillators long-term results of the multinational ICD sports registry.
        Circul Arrhythmia Electrophysiol. 2018; 11006305
        • Cheng A.
        • Auricchio A.
        • Schloss E.J.
        • et al.
        SVT discrimination algorithms significantly reduce the rate of inappropriate therapy in the setting of modern-day delayed high-rate detection programming.
        J Cardiovasc Electrophysiol. 2019; 30: 2877-2884
        • Zeitler E.P.
        • Sanders G.D.
        • Singh K.
        • et al.
        Single vs. dual chamber implantable cardioverter-defibrillators or programming of implantable cardioverter-defibrillators in patients without a bradycardia pacing indication: systematic review and meta-analysis.
        Europace. 2018; 20: 1621-1629
        • Dewland T.A.
        • Pellegrini C.N.
        • Wang Y.
        • Marcus G.M.
        • Keung E.
        • Varosy P.D.
        Dual-chamber implantable cardioverter-defibrillator selection is associated with increased complication rates and mortality among patients enrolled in the NCDR implantable cardioverter-defibrillator registry.
        J Am Coll Cardiol. 2011; 58: 1007-1013
        • Gasparini M.
        • Proclemer A.
        • Kloppe A.
        • Lunati M.
        • Santi E.
        • Manotta L.
        Effect of long-detection interval vs standard-detection interval for implantable cardioverter-defibrillators.
        JAMA. 2013; 309: 1903-1911
        • Moss A.J.
        • Schuger C.
        • Beck C.A.
        • et al.
        Reduction in inappropriate therapy and mortality through ICD programming.
        N Engl J Med. 2012; 367: 2275-2283
        • Larbig R.
        • Motloch L.J.
        • Bettin M.
        • et al.
        Device updates successfully reduce T‑wave oversensing and inappropriate shocks in subcutaneous ICD patients.
        Netherlands Heart J. 2018; 26: 606-611
        • Sun Y.X.
        • Gao J.
        • Jiang C.Y.
        • et al.
        T wave safety margin during the process of ICD implantation as a novel predictor of T wave oversensing.
        Front Physiol. 2017; 8: 1-9
        • Swerdlow C.D.
        • Kalahasty G.
        • Ellenbogen K.A.
        Implantable cardiac defibrillator lead failure and management.
        J Am Coll Cardiol. 2016; 67: 1358-1368
        • Fazal I.A.
        • Shepherd E.J.
        • Tynan M.
        • Plummer C.J.
        • McComb J.M.
        Comparison of Sprint Fidelis and Riata defibrillator lead failure rates.
        Int J Cardiol. 2013; 168: 848-852
        • Liu J.
        • Brumberg G.
        • Rattan R.
        • Jain S.
        • Saba S.
        Class i recall of defibrillator leads: a comparison of the Sprint Fidelis and Riata families.
        Heart Rhythm. 2012; 9: 1251-1255
        • Almqvist M.
        • Mattsson G.
        • Razmi R.
        Cardiac implantable electronic device-related infections.
        Intech Open. 2019; (DOI)
        • Olde Nordkamp L.R.A.
        • Knops R.E.
        • Bardy G.H.
        • et al.
        Rationale and design of the PRAETORIAN trial: a prospective, randomized comparison of subcutaneous and transvenous implantable cardioverter- defibrillator therapy.
        Am Heart J. 2012; 163
        • Kaya E.
        • Rassaf T.
        • Wakili R.
        Subcutaneous ICD: current standards and future perspective.
        IJC Heart Vasculat. 2019; 24100409
        • Gold M.R.
        • Lambiase P.D.
        • El-Chami M.F.
        • et al.
        Primary results from the understanding outcomes with the S-ICD in primary prevention patients with low ejection fraction (UNTOUCHED) trial.
        Circul Am Heart Assoc. 2020; : 843-876
        • Sears Jr, S.F.
        • Conti J.B
        Quality of life and psychological functioning of ICD patients.
        Heart JNL. 2002; 87: 488-493
        • Sears S.F.
        • Rosman L.
        • Sasaki S.
        • et al.
        Defibrillator shocks and their effect on objective and subjective patient outcomes: results of the PainFree SST clinical trial.
        Heart Rhythm. 2018; 15: 734-740