Highlights
- •Machine learning algorithms can accurate predict the MV duration for ARDS patients in intensive care units.
- •XGBoosting model showed best performance in external test datasets from United State and Netherlands
- •LIME, SHAP and Breakdown were conducted for model explanation which is easier for clinicians to understand.
Abstract
Background
Objective
Method
Result
Conclusion
Keywords
Introduction
Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and Outcomes of Acute Lung Injury From the Division of Pulmonary and Criti-cal Care Medicine (G [Internet]. Vol. 16, n engl j med. 2005. Available from: www.nejm.org
Papazian L, Aubron C, Brochard L, Chiche JD, Combes A, Dreyfuss D, Forel JM, Guérin C, Jaber S, Mekontso-Dessap A, Mercat A, Richard JC, Roux D, Vieillard-Baron A, Faure H. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019 Jun 13;9(1):69. https://doi.org/10.1186/s13613-019-0540-9. PMID: 31197492; PMCID: PMC6565761.
Terragni PP, Antonelli M, Fumagalli R, Faggiano C, Berardino M, Pallavicini FB, et al. Early vs late tracheotomy for prevention of Pneumonia in mechanically ventilated adult ICU patients a randomized controlled trial [Internet]. Available from: https://jamanetwork.com/
Method
Data source and setting
- Wu WT
- Li YJ
- Feng AZ
- Li L
- Huang T
- Xu AD
- Lyu J.
- Pollard TJ
- Johnson AEW
- Raffa JD
- Celi LA
- Mark RG
- Badawi O.
- Thoral PJ
- Peppink JM
- Driessen RH
- Sijbrands EJG
- Kompanje EJO
- Kaplan L
- et al.
Study population and feature selection
- Pollard TJ
- Johnson AEW
- Raffa JD
- Celi LA
- Mark RG
- Badawi O.
Opening the black box of machine learning.
Lundberg S, Lee SI. A Unified Approach to Interpreting Model Predictions. 2017 May 22; Available from: http://arxiv.org/abs/1705.07874
- Leisman DE
- Harhay MO
- Lederer DJ
- Abramson M
- Adjei AA
- Bakker J
- Ballas ZK
- Barreiro E
- Bell SC
- Bellomo R
- Bernstein JA
- Branson RD
- Brusasco V
- Chalmers JD
- Chokroverty S
- Citerio G
- Collop NA
- Cooke CR
- Crapo JD
- Donaldson G
- Fitzgerald DA
- Grainger E
- Hale L
- Herth FJ
- Kochanek PM
- Marks G
- Moorman JR
- Ost DE
- Schatz M
- Sheikh A
- Smyth AR
- Stewart I
- Stewart PW
- Swenson ER
- Szymusiak R
- Teboul JL
- Vincent JL
- Wedzicha JA
- Maslove DM.
Opening the black box of machine learning.
- Leisman DE
- Harhay MO
- Lederer DJ
- Abramson M
- Adjei AA
- Bakker J
- Ballas ZK
- Barreiro E
- Bell SC
- Bellomo R
- Bernstein JA
- Branson RD
- Brusasco V
- Chalmers JD
- Chokroverty S
- Citerio G
- Collop NA
- Cooke CR
- Crapo JD
- Donaldson G
- Fitzgerald DA
- Grainger E
- Hale L
- Herth FJ
- Kochanek PM
- Marks G
- Moorman JR
- Ost DE
- Schatz M
- Sheikh A
- Smyth AR
- Stewart I
- Stewart PW
- Swenson ER
- Szymusiak R
- Teboul JL
- Vincent JL
- Wedzicha JA
- Maslove DM.


MIMIC-IV (N=1,148) | eICU-CRD (N=1,697) | Amsterdamumcdb (N=29) | p-value | |
---|---|---|---|---|
MV Duration (Day) | 4.7 (2.4,9.6) | 2.0 (2.0,2.0) | 9.5 (6.8,12.4) | <0.001 |
Age (Year) | 63 (51,73) | 59 (41,70) | 9.5 (6.8,12.4) | <0.001 |
Weight (Kg) | 81.0 (67.7,97.6) | 83.2 (67.7,102.3) | 77.0 (66.0,86.0) | <0.001 |
SOFA Score | 9 | 8 | 10 | <0.001 |
PEEP (cm H2O) | 5 | 5 | 8 | <0.001 |
SpO2 (%) | 97.0 (94.0,100.0) | 96.0 (93.0,99.0) | 93.0 (90.0,97.0) | <0.001 |
PaO2 (mm Hg) | 83.0 (57.0,170.3) | 81.7 (66.1,144.0) | 85.0 (66.0,107.0) | 0.683 |
FiO2 (%) | 70.0 (50.0,100.0) | 60 (40.1,100.0) | 30.0 (20.0,40.0) | <0.001 |
PaCO2 (mm Hg) | 43.0 (36.0,52.0) | 42.0 (35.8,51.0) | 41.0 (34.0,48.0) | 0.031 |
pH | 7.3 (7.3,7.4) | 7.4 (7.3,7.4) | 7.4 (7.2,7.5) | <0.001 |
Heart Rate (/min) | 93.0 (80.0,109.0) | 96.0 (81.0,112.0) | 105.0 (99.0,124.0) | <0.001 |
Mean Arterial Pressure (mm Hg) | 74.5 (65.0,85.0) | 78.0 (68.0,92.0) | 85.0 (76.0,117) | <0.001 |
Vasopressor Use | <0.001 | |||
No | 821 (71.5) | 1189 (70.1) | 7 (24.1) | |
Yes | 327 (28.5) | 508 (29.90) | 22 (75.9) | |
Renal Replacement Therapy | 0.017 | |||
No | 917 (79.9) | 1423 (83.4) | 22 (75.9) | |
Yes | 231 (20.1) | 274 (16.6) | 7 (24.1) |
Machine learning models construction and hyperparameter tuning

Opening the black box of machine learning.
Lundberg S, Lee SI. A Unified Approach to Interpreting Model Predictions. 2017 May 22; Available from: http://arxiv.org/abs/1705.07874
Results
Algorithm | RMSE±SD |
---|---|
Support vector Machine (Linear Kernel) | 7.36±0.92 |
Support vector Machine (Radial Basis Function Kernel) | 7.23±0.90 |
Decision Tree | 7.45±0.95 |
Random forest | 7.22±0.90 |
XGboosting | 7.34±0.91 |
Neural Network | 9.62±0.93 |
k-Nearest Neighbors | 7.41±0.99 |
Algorithm | Testing Cohort (RMSE) | |
---|---|---|
eICU | AmsterdamUMCdb | |
Support vector Machine (Linear Kernel) | 4.39 | 6.46 |
Support vector Machine (Radial Basis Function Kernel) | 5.22 | 6.14 |
Decision tree | 5.65 | 5.94 |
Neural Network | 1.59 | 9.92 |
Random forest | 6.48 | 5.43 |
k-Nearest Neighbors | 5.57 | 6.03 |
XGboosting | 5.57 | 5.46 |

Discussion
- Chelluri L
- Im KA
- Belle SH
- Schulz R
- Rotondi AJ
- Donahoe MP
- Sirio CA
- Mendelsohn AB
- Pinsky MR.
Lundberg S, Lee SI. A Unified Approach to Interpreting Model Predictions. 2017 May 22; Available from: http://arxiv.org/abs/1705.07874
- Dasta JF
- McLaughlin TP
- Mody SH
- Piech CT.
- Chelluri L
- Im KA
- Belle SH
- Schulz R
- Rotondi AJ
- Donahoe MP
- Sirio CA
- Mendelsohn AB
- Pinsky MR.
- Magoon R.
- Clark PA
- Inocencio RC
- Lettieri CJ.
Conclusion
Ethics approval and consent to participate
Consent for publication
Funding
Availability of data and material
Author contributions
Financial Disclosure statement
Conflicts of interest
Acknowledgments
Appendix. Supplementary materials
References
Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and Outcomes of Acute Lung Injury From the Division of Pulmonary and Criti-cal Care Medicine (G [Internet]. Vol. 16, n engl j med. 2005. Available from: www.nejm.org
- Acute lung injury: how to stabilize a broken lung.Crit Care. 2018; 22 ([Internet]May 24Available from): 136
- Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries.JAMA. 2016; 315 (Feb 23): 788-800
- The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia.Intensive Care Med. 2016; 42 ([Internet]2016/04/04MayAvailable from): 699-711
Papazian L, Aubron C, Brochard L, Chiche JD, Combes A, Dreyfuss D, Forel JM, Guérin C, Jaber S, Mekontso-Dessap A, Mercat A, Richard JC, Roux D, Vieillard-Baron A, Faure H. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019 Jun 13;9(1):69. https://doi.org/10.1186/s13613-019-0540-9. PMID: 31197492; PMCID: PMC6565761.
- Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial.Intensive Care Med. 2016; 42 (May 1): 871-878
- Cost and health care utilization in ARDS–different from other critical illness?.Semin Respir Crit Care Med. 2013; 34 ([Internet]2013/08/11AugAvailable from): 529-536
- Biotrauma and ventilator-induced lung injury: clinical implications.Chest. 2016; 150 (Nov 1): 1109-1117
Terragni PP, Antonelli M, Fumagalli R, Faggiano C, Berardino M, Pallavicini FB, et al. Early vs late tracheotomy for prevention of Pneumonia in mechanically ventilated adult ICU patients a randomized controlled trial [Internet]. Available from: https://jamanetwork.com/
- ESPEN guidelines on enteral nutrition: intensive care.Clin Nutr. 2006; 25 (Apr): 210-223
- Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm.Diabetes. 2006; 55 (Nov): 3151-3159
- A proposal of a new model for long-term weaning: respiratory intensive care unit and weaning center.Respir Med. 2010; 104 (Oct): 1505-1511
- Accuracy of early prediction of duration of mechanical ventilation by intensivists.Ann Am Thorac Soc. 2014; 11: 182-185
- Artificial intelligence in the intensive care unit.Crit Care. 2020; 24 ([Internet]Mar 24Available from): 101
- Data mining in clinical big data: the frequently used databases, steps, and methodological models.Mil Med Res. 2021 Aug 11; 8 (PMID: 34380547; PMCID: PMC8356424): 44https://doi.org/10.1186/s40779-021-00338-z
- Brief introduction of medical database and data mining technology in big data era.J Evid Based Med. 2020; 13: 57-69
Johnson AEW, Pollard TJ, Shen L, Lehman LWH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. entific Data.
- The eICU collaborative research database, a freely available multi-center database for critical care research.Sci Data. 2018; 5 ([Internet]Available from)180178https://doi.org/10.1038/sdata.2018.178
- Sharing ICU patient data responsibly under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: the Amsterdam university medical centers database (AmsterdamUMCdb) example∗.Crit Care Med. 2021; 49 (Jun 1): E563-E577
- Acute respiratory distress syndrome: the Berlin definition.JAMA. 2012; 307 ([Internet]Jun 20Available from): 2526-2533https://doi.org/10.1001/jama.2012.5669
- Development and Reporting of Prediction Models: Guidance for Authors From Editors of Respiratory, Sleep, and Critical Care Journals.Crit Care Med. 2020 May; 48 (PMID: 32141923; PMCID: PMC7161722): 623-633https://doi.org/10.1097/CCM.0000000000004246
- Opening the black box of machine learning.Lancet Respir Med. 2018 Nov; 6 (Epub 2018 Oct 18. PMID: 30343029): 801https://doi.org/10.1016/S2213-2600(18)30425-9
- Why should I trust you?” Explaining the predictions of any classifier.in: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 2016: 1135-1144
Lundberg S, Lee SI. A Unified Approach to Interpreting Model Predictions. 2017 May 22; Available from: http://arxiv.org/abs/1705.07874
- DALEX: Explainers for Complex Predictive Models in R.Journal of Machine Learning Research. 2018; 19: 1-5
- Long-term mortality and quality of life after prolonged mechanical ventilation.Crit Care Med. 2004 Jan; 32 (PMID: 14707560): 61-69https://doi.org/10.1097/01.CCM.0000098029.65347.F9
- Differences in one-year health outcomes and resource utilization by definition of prolonged mechanical ventilation: a prospective cohort study.Crit Care. 2007; 11 ([Internet]Available from): R9
- Mortality is directly related to the duration of mechanical ventilation before the initiation of extracorporeal life support for severe respiratory failure.Crit Care Med. 1997 Jan; 25 (PMID: 8989172): 28-32https://doi.org/10.1097/00003246-199701000-00008
- Prolonged acute mechanical ventilation, hospital resource utilization, and mortality in the United States.Crit Care Med. 2008 Mar; 36 (PMID: 18209667): 724-730https://doi.org/10.1097/CCM.0B013E31816536F7
- Daily cost of an intensive care unit day: the contribution of mechanical ventilation.Crit Care Med. 2005 Jun; 33 (PMID: 15942342): 1266-1271https://doi.org/10.1097/01.ccm.0000164543.14619.00
- Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement.J Surg Res. 2018; 228 ([Internet]Available from): 179-187
- Development and validation of a score to identify cardiac surgery patients at high risk of prolonged mechanical ventilation.J Cardiothorac Vasc Anesth. 2019; 33 ([Internet]Available from): 2709-2716
- RAISE"ing a Score to Predict Prolonged Mechanical Ventilation Following Subarachnoid Hemorrhage.Crit Care Med. 2022 Jul 1; 50 (Epub 2022 Jun 13. PMID: 35726992): e655-e656ehttps://doi.org/10.1097/CCM.0000000000005507
- I-TRACH: validating a tool for predicting prolonged mechanical ventilation.J Intensive Care Med. 2016; 33 ([Internet]Nov 30Available from): 567-573https://doi.org/10.1177/0885066616679974
- Risk Score for Prolonged Mechanical Ventilation in Coronary Artery Bypass Grafting.Int J Cardiovasc Sci. 2020; 34: 264-271
- Predictive models of prolonged mechanical ventilation yield moderate accuracy.J Crit Care. 2015; 30 ([Internet]Available from): 502-505
- Variation in definition of prolonged mechanical ventilation.Respir Care. 2017; 62 (Oct 1): 1324-1332
- Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning.J Clin Med. 2021; 10 (Published 2021 Aug 26): 3824https://doi.org/10.3390/jcm10173824