Advertisement
Research Article| Volume 57, P180-185, January 2023

Download started.

Ok

Can support surfaces characteristics influence high-quality chest compression? manikin experiment with a mechanical device

  • Carla de Azevedo Vianna
    Correspondence
    Corresponding author: Carla de Azevedo Vianna – Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. - Rua Afonso Cavalcanti, 275/ Cidade Nova – Rio de Janeiro, Brazil, ZIPCODE:. 20211-110.
    Affiliations
    Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. Rua Afonso Cavalcanti, 275/ Cidade Nova Rio de Janeiro, Brazil, ZIPCODE: 20211-110

    Pró-Cardíaco Hospital, Rio de Janeiro, Brazil. Rua General Polidoro 192, Botafogo / Rio de Janeiro, Brazil, ZIPCODE: 22280-003
    Search for articles by this author
  • Juliana Faria Campos
    Affiliations
    Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. Rua Afonso Cavalcanti, 275/ Cidade Nova Rio de Janeiro, Brazil, ZIPCODE: 20211-110
    Search for articles by this author
  • Hudson Carmo de Oliveira
    Affiliations
    Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. Rua Afonso Cavalcanti, 275/ Cidade Nova Rio de Janeiro, Brazil, ZIPCODE: 20211-110
    Search for articles by this author
  • Debora Mazioli Machado
    Affiliations
    Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. Rua Afonso Cavalcanti, 275/ Cidade Nova Rio de Janeiro, Brazil, ZIPCODE: 20211-110

    Pró-Cardíaco Hospital, Rio de Janeiro, Brazil. Rua General Polidoro 192, Botafogo / Rio de Janeiro, Brazil, ZIPCODE: 22280-003
    Search for articles by this author
  • Gabriela Barcellos de Bakker
    Affiliations
    Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. Rua Afonso Cavalcanti, 275/ Cidade Nova Rio de Janeiro, Brazil, ZIPCODE: 20211-110

    Americas Medical City Hospital, Rio de Janeiro, Brazil. Rua Jorge Cury 550, Barra da Tijuca / Rio de Janeiro, Brazil, ZIPCODE: 22775-00
    Search for articles by this author
  • Rafael Celestino da Silva
    Affiliations
    Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. Rua Afonso Cavalcanti, 275/ Cidade Nova Rio de Janeiro, Brazil, ZIPCODE: 20211-110
    Search for articles by this author
  • Marcos Antônio Gomes Brandão
    Affiliations
    Anna Nery School of Nursing, Federal University of Rio de Janeiro. Rio de Janeiro, Brazil. Rua Afonso Cavalcanti, 275/ Cidade Nova Rio de Janeiro, Brazil, ZIPCODE: 20211-110
    Search for articles by this author
Published:October 10, 2022DOI:https://doi.org/10.1016/j.hrtlng.2022.09.023

      Highlights

      • Support surfaces variables, such as size, material, and density can influence the force performed during chest compression.
      • Backboard was not relevant for decreasing strength, regardless of the bed/stretch and mattress setups and the backboards' characteristics.
      • The dimensions and type of beds and mattresses, mainly, are related to higher resistance.
      • Intensive care environments present the most significant challenge in terms of surface characteristics that do not favor quality chest compression..

      Abstract

      Background: Support surfaces variables, such as size, material, and density, can determine chest compression depth in cardiopulmonary resuscitation. Objective: to analyze the force required to do a high-quality chest compression concerning different surfaces in CPR. Method: This experimental study was developed using a Little Anne manikin and a mechanical device to perform chest compressions. Nine sets of surfaces were tested and compared to a control. Results: 230 experimental tests were done in sets of bed or stretcher + mattress and presence or absence of different backboards. In the control condition, the average force to reach 5 cm of depth was 42.14±0.97 (kgf). Set 9, compatible with a narrow stretcher with a thin mattress, had the best surfaces to reach recommended depth, with or without a backboard. All other sets required significantly more force for high-quality chest compression. Regression analysis confirms that backboard size is not significant for the force for high-quality chest compression. Conclusion: There is an association of dimensions and types of beds or stretchers and mattresses with a force increase. Type and dimensions of the backboard are not relevant for the force required, regardless of the characteristics of the set of the bed or stretcher and mattress.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart & Lung: The Journal of Cardiopulmonary and Acute Care
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lin Y.
        • Wan B.
        • Belanger C.
        • Hecker K.
        • Gilfoyle E.
        • Davidson J.
        • et al.
        Reducing the impact of intensive care unit mattress compressibility during CPR: a simulation-based study.
        Adv Simul [Internet]. 2017; 2 (Available at:): 22
        • Harris A.W.
        • Kudenchuk P.J.
        Cardiopulmonary resuscitation: the science behind the hands.
        Heart. 2018; 104 (Epub 2018 Jan 20. PMID: 29353251): 1056-1061https://doi.org/10.1136/heartjnl-2017-312696
        • Direko K.K.
        • Davhana-Maselesele M.
        A model of collaboration between nursing education institutions in the North West Province of South Africa.
        Curationis [Internet]. 2017; 40 (Available at:): e1-10
        • Vianna C.A.
        • Oliveira H.C.
        • Souza L.C.
        • Silva R.C.
        • Brandão M.A.G.
        • Campos J.F.
        Impact of compression surfaces on cardiac massage during cardiopulmonary reanimation: an integrative review.
        Esc Anna Nery. 2021; 25e20210021https://doi.org/10.1590/2177-9465-EAN-2021-0021
        • Meaney P.A.
        • Bobrow B.J.
        • Mancini M.E.
        • Christenson J.
        • Caen A.R.
        • Bhanji F.
        • et al.
        Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the.
        American Heart Association. Circulation. 2013; 128 (Jul 23Epub 2013 Jun 25. Erratum in: Circulation. 2013 Aug 20;128(8):e120. Erratum in: Circulation. 2013. Nov 12;128(20):e408. PMID: 23801105): 417-435https://doi.org/10.1161/CIR.0b013e31829d8654
        • Song Y.
        • Oh J.
        • Lim T.
        • Chee Y.
        A new method to increase the quality of cardiopulmonary resuscitation in hospital.
        Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2013: 469-472https://doi.org/10.1109/EMBC.2013.6609538
        • Paganini M.
        • Mormando G.
        • Carfagna F.
        • Ingrassia P.L.
        Use of backboards in cardiopulmonary resuscitation: a systematic review and meta-analysis.
        Eur J Emerg Med. 2021 Jun: 28; : 180-188https://doi.org/10.1097/MEJ.0000000000000784
        • Yannopoulos D.
        • Aufderheide T.P.
        • Abella B.S.
        • Duval S.
        • Frascone R.J.
        • Goodloe J.M.
        • et al.
        Quality of CPR: an important effect modifier in cardiac arrest clinical outcomes and intervention effectiveness trials.
        Resuscitation. 2015; 94 (Available at:): 106-113https://doi.org/10.1016/j.resuscitation.2015.06.004
        • Nishisaki A.
        • Maltese M.R.
        • Niles D.E.
        • Sutton R.M.
        • Urbano J.
        • Berg R.A.
        • et al.
        Backboards are important when chest compressions are provided on a soft mattress.
        Resuscitation [Internet]. 2012; 83: 1013-1020https://doi.org/10.1016/j.resuscitation.2012.01.016
        • Kleinman M.E.
        • Brennan E.E.
        • Goldberger Z.D.
        • Swor R.A.
        • Terry M.
        • Bobrow B.J.
        • et al.
        Part 5: adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
        Circulation [Internet]. 2015 Nov; 132 (Available at:): S414-S435
        • Panchal A.R.
        • Bartos J.A.
        • Cabañas J.G.
        • Donnino M.W.
        • Drennan I.R.
        • Hirsch K.G.
        • et al.
        Part 3: adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
        Circulation [Internet]. 2020 Oct; 142: S366-S468https://doi.org/10.1161/CIR.0000000000000916
        • Stiell I.G.
        • Brown S.P.
        • Christenson J.
        • Cheskes S.
        • Nichol G.
        • Powell J.
        • et al.
        What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation?.
        Crit Care Med [Internet]. 2012 Apr; 40 (Available at:): 1192-1198
        • Vadeboncoeur T.
        • Stolz U.
        • Panchal A.
        • Silver A.
        • Venuti M.
        • Tobin J.
        • et al.
        Chest compression depth and survival in out-of-hospital cardiac arrest.
        Resuscitation [Internet]. 2014; 85: 182-188https://doi.org/10.1016/j.resuscitation.2013.10.002
        • Holt J.
        • Ward A.
        • Mohamed T.
        • Chukowry P.S
        • Grolmusová N
        • Couper K
        • Morley P
        • Perkins G.D
        The optimal surface for delivery of CPR: A systematic review and meta-analysis.
        Resuscitation. 2020; 155: 159-164https://doi.org/10.1016/j.resuscitation.2020.07.020
        • Havel C.
        • Schreiber W.
        • Riedmuller E.
        • Haugk M.
        • Richling N.
        • Trimmel H.
        • et al.
        Quality of closed chest compression in ambulance vehicles, flying helicopters and at the scene.
        Resuscitation. 2007; 73: 264-270https://doi.org/10.1016/j.resuscitation.2006.09.007
        • Sanri E.
        • Karacabey S.
        The impact of backboard placement on chest compression quality: a mannequin study.
        Prehosp Disaster Med. 2019; 34: 182-187https://doi.org/10.1017/S1049023×19000153
        • Putzer G.
        • Fiala A.
        • Braun P.
        • Neururer S.
        • Biechl K.
        • Keilig B.
        • et al.
        Manual versus mechanical chest compressions on surfaces of varying softness with or without backboards: a randomized, crossover manikin study.
        J Emerg Med. 2016; 50: 594-600https://doi.org/10.1016/j.jemermed.2015.10.002
        • Perkins G.D.
        • Smith C.M.
        • Augre C.
        • Allan M.
        • Rogers H.
        • Stephenson B.
        • et al.
        Effects of a backboard, bed height, and operator position on compression depth during simulated resuscitation.
        Intensive Care Med [Internet]. 2006 Oct; 32 (Available at:): 1632-1635
        • Sebbane M.
        • Hayter M.
        • Romero J.
        • Lefebvre S.
        • Chabrot C.
        • Mercier G.
        • et al.
        Chest compressions performed by ED staff: a randomized cross-over simulation study on the floor and on a stretcher.
        Am J Emerg Med [Internet]. 2012; 30: 1928-1934https://doi.org/10.1016/j.ajem.2012.04.013
        • Zhou X.L.
        • Sheng L.P.
        • Wang J.
        • Li S.Q.
        • Wang H.L.
        • Ni S.Z.
        • et al.
        Effect of bed width on the quality of compressions in simulated resuscitation: a randomized crossover manikin study.
        Am J Emerg Med [Internet]. 2016; 34: 2272-2276https://doi.org/10.1016/j.ajem.2016.08.020
        • Noordergraaf G.J.
        • Paulussen I.W.F.
        • Venema A.
        • van Berkom P.F.J.
        • Woerlee P.H.
        • Scheffer G.J.
        • et al.
        The impact of compliant surfaces on in-hospital chest compressions: effects of common mattresses and a backboard.
        Resuscitation [Internet]. 2009; 80 (Available at:): 546-552
        • Cloete G.
        • Dellimore K.H.
        • Scheffer C.
        Comparison of experimental chest compression data to a theoretical model for the mechanics of constant peak displacement cardiopulmonary resuscitation.
        Acad Emerg Med. 2011; 18: 1167-1176https://doi.org/10.1111/j.1553-2712.2011.01213.x
        • Kim J.A.
        • Vogel D.
        • Guimond G.
        • Hostler D.
        • Wang H.E.
        • Menegazzi J.J.
        A randomized, controlled comparison of cardiopulmonary resuscitation performed on the floor and on a moving ambulance stretcher.
        Prehosp Emerg Care. 2006; 10: 68-70https://doi.org/10.1080/10903120500373108
        • Perkins G.D.
        • Benny R.
        • Giles S.
        • Gao F.
        • Tweed M.J.
        Do different mattresses affect the quality of cardiopulmonary resuscitation?.
        Intensive Care Med [Internet]. 2003 Dec; 29 (Available at:): 2330-2335
        • Tweed M.
        • Tweed C.
        • Perkins G.D.
        The effect of differing support surfaces on the efficacy of chest compressions using a resuscitation manikin model.
        Resuscitation [Internet]. 2001 Nov; 51 (Available at:): 179-183
        • Reddy M.
        • Gill S.S.
        • Rochon P.A.
        Preventing Pressure Ulcers: a Systematic Review.
        JAMA [Internet]. 2006 Aug; 296 (Available at:): 974
        • Sainio M.
        • Hellevuo H.
        • Huhtala H.
        • Hoppu S.
        • Eilevstjønn J.
        • Tenhunen J.
        • et al.
        Effect of mattress and bed frame deflection on real chest compression depth measured with two CPR sensors.
        Resuscitation [Internet]. 2014 Jun; 85: 840-843https://doi.org/10.1016/j.resuscitation.2014.03.009
        • Nishisaki A.
        • Nysaether J.
        • Sutton R.
        • Maltese M.
        • Niles D.
        • Donoghue A.
        • et al.
        Effect of mattress deflection on CPR quality assessment for older children and adolescents.
        Resuscitation [Internet]. 2009 May; 80 (Available at:): 540-545
        • Oh J.
        • Kang H.
        • Chee Y.
        • Lim T.
        • Song Y.
        • Cho Y.
        • et al.
        Use of backboard and deflation improve quality of chest compression when cardiopulmonary resuscitation is performed on a typical air inflated mattress configuration.
        J Korean Med Sci [Internet]. 2013 Feb; 28 (Available at:): 315-319
        • Fischer E.J.
        • Mayrand K.
        • Ten Eyck R.P
        Effect of a backboard on compression depth during cardiac arrest in the ED: a simulation study.
        Am J Emerg Med [Internet]. 2016 Feb; 34 (Available at:): 274-277
        • Oh J.
        • Kim C.
        • Kim S.
        • Lee D.
        Does the Bed Frame Deflection Occur along with Mattress Deflection during In-Hospital Cardiopulmonary Resuscitation? an Experiment Using Mechanical Devices.
        Hong Kong J Emerg Med [Internet]. 2016 Mar; 23: 35-41https://doi.org/10.1177/102490791602300205
        • Ross R.
        Wood Handbook—Wood As an Engineering material. General Technical Report FPL-GTR-282.
        U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI2021
      1. Shackelford J.F., Han Y.H., Kim S., Kwon S.K. CRC Materials Science and Engineering Handbook. 4th ed. CRC Press. https://doi.org/10.1201/b18971; 2015