Advertisement

Intermittent positive pressure ventilation increases diastolic pulmonary arterial pressure in advanced COPD

Published:November 20, 2014DOI:https://doi.org/10.1016/j.hrtlng.2014.10.006

      Abstract

      Objectives

      To measure the impact of intermittent positive pressure ventilation (IPPV) on diastolic pulmonary arterial pressure (dPAP) and pulmonary pulse pressure in patients with advanced COPD.

      Background

      The physiological effects of raised intrathoracic pressures upon the pulmonary circulation have not been fully established.

      Methods

      22 subjects with severe COPD receiving IPPV were prospectively assessed with pulmonary and radial arterial catheterization. Changes in dPAP were assessed from end-expiration to early inspiration during low and high tidal volume ventilation.

      Results

      Inspiration during low tidal volume IPPV increased the median [IQR] dPAP by 3.9 [2.5–4.8] mm Hg (P < 0.001). During high tidal volume, similar changes were observed. The IPPV-associated change in dPAP was correlated with baseline measures of PaO2 (rho = 0.65, P = 0.005), pH (rho = 0.64, P = 0.006) and right atrial pressure (rho = −0.53, P = 0.011).

      Conclusions

      In severe COPD, IPPV increases dPAP and reduces pulmonary pulse pressure during inspiration.

      Keywords

      Abbreviation:

      Ax-surgery time (time duration between lung transplant assessment and lung transplant surgery), BMI (body mass index), CI (right ventricular cardiac index), COPD (chronic obstructive pulmonary disease), dBP (diastolic systemic arterial blood pressure), dPAP (diastolic pulmonary arterial pressure), FEV1 (forced expiratory volume in one second), FiO2 (fraction of inspired oxygen), FRC (functional residual capacity), FVC (forced vital capacity), HR (Heart rate), I:E (inspiratory to expiratory), IC (inspiratory capacity), IPAP (inspiratory positive airway pressure), IPPV (intermittent positive pressure ventilation), mPAP (mean pulmonary arterial pressure), PAWP (Pulmonary arterial wedge pressure), PEEPE (extrinsic positive end-expiratory pressure), PVR (pulmonary vascular resistance), RAP (right atrial pressure), RR (respiratory rate), RV (residual volume), sBP (systolic systemic arterial blood pressure), sPAP (systolic pulmonary arterial pressure), SVI (right ventricular stroke volume index), TLC (total lung capacity), TLCOhb (transfer factor of the lung for carbon monoxide corrected for hemoglobin), VT (tidal volume)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Heart & Lung: The Journal of Cardiopulmonary and Acute Care
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoeper M.M.
        • Barberà J.A.
        • Channick R.N.
        • et al.
        Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension.
        J Am Coll Cardiol. 2009; 54: S85-S96
        • Andersen K.H.
        • Iversen M.
        • Kjaergaard J.
        • et al.
        Prevalence, predictors, and survival in pulmonary hypertension related to end-stage chronic obstructive pulmonary disease.
        J Heart Lung Transplant. 2012; 31: 373-380
        • Doi M.
        • Nakano K.
        • Hiramoto T.
        • Kohno N.
        Significance of pulmonary artery pressure in emphysema patients with mild-to-moderate hypoxemia.
        Respir Med. 2003; 97: 915-920
        • Oswald-Mammosser M.
        • Weitzenblum E.
        • Quoix E.
        • et al.
        Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure.
        Chest. 1995; 107: 1193-1198
        • Kessler R.
        • Faller M.
        • Fourgaut G.
        • Mennecier B.
        • Weitzenblum E.
        Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 1999; 159: 158-164
        • Sims M.W.
        • Margolis D.J.
        • Localio A.R.
        • Panettieri R.A.
        • Kawut S.M.
        • Christie J.D.
        Impact of pulmonary artery pressure on exercise function in severe COPD.
        Chest. 2009; 136: 412-419
        • Blanco I.
        • Gimeno E.
        • Munoz P.A.
        • et al.
        Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension.
        Am J Respir Crit Care Med. 2010; 181: 270-278
        • Morley T.F.
        • Zappasodi S.J.
        • Belli A.
        • Giudice J.C.
        Pulmonary vasodilator therapy for chronic obstructive pulmonary disease and cor pulmonale. Treatment with nifedipine, nitroglycerin, and oxygen.
        Chest. 1987; 92: 71-76
        • Rietema H.
        • Holverda S.
        • Bogaard H.J.
        • et al.
        Sildenafil treatment in COPD does not affect stroke volume or exercise capacity.
        Eur Respir J. 2008; 31: 759-764
        • Sajkov D.
        • McEvoy R.D.
        • Cowie R.J.
        • et al.
        Felodipine improves pulmonary hemodynamics in chronic obstructive pulmonary disease.
        Chest. 1993; 103: 1354-1361
        • Stolz D.
        • Rasch H.
        • Linka A.
        • et al.
        A randomised, controlled trial of bosentan in severe COPD.
        Eur Respir J. 2008; 32: 619-628
        • Wrobel J.P.
        • Thompson B.R.
        • Williams T.J.
        Mechanisms of pulmonary hypertension in chronic obstructive pulmonary disease: a pathophysiologic review.
        J Heart Lung Transpl. 2012; 31: 557-564
        • Wright J.L.
        • Lawson L.
        • Pare P.D.
        • et al.
        The structure and function of the pulmonary vasculature in mild chronic obstructive pulmonary disease. The effect of oxygen and exercise.
        Am Rev Respir Dis. 1983; 128: 702-707
        • Naeije R.
        • Barbera J.A.
        Pulmonary hypertension associated with COPD.
        Crit Care. 2001; 5: 286-289
        • Scharf S.M.
        • Iqbal M.
        • Keller C.
        • Criner G.
        • Lee S.
        • Fessler H.E.
        Hemodynamic characterization of patients with severe emphysema.
        Am J Respir Crit Care Med. 2002; 166: 314-322
        • Thabut G.
        • Dauriat G.
        • Stern J.B.
        • et al.
        Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation.
        Chest. 2005; 127: 1531-1536
        • Elwing J.
        • Panos R.J.
        Pulmonary hypertension associated with COPD.
        Int J Chron Obstruct Pulmon Dis. 2008; 3: 55-70
        • Weitzenblum E.
        • Chaouat A.
        Cor pulmonale.
        Chron Respir Dis. 2009; 6: 177-185
        • Baigorri F.
        • de Monte A.
        • Blanch L.
        • et al.
        Hemodynamic responses to external counterbalancing of auto-positive end-expiratory pressure in mechanically ventilated patients with chronic obstructive pulmonary disease.
        Crit Care Med. 1994; 22: 1782-1791
        • Manny J.
        • Patten M.T.
        • Liebman P.R.
        • Hechtman H.B.
        The association of lung distention, PEEP and biventricular failure.
        Ann Surg. 1978; 187: 151-157
        • Nielsen J.
        • Ostergaard M.
        • Kjaergaard J.
        • et al.
        Lung recruitment maneuver depresses central hemodynamics in patients following cardiac surgery.
        Intensive Care Med. 2005; 31: 1189-1194
        • Pinsky M.R.
        Heart lung interactions during mechanical ventilation.
        Curr Opin Crit Care. 2012; 18: 256-260
        • Peters J.
        • Kindred M.K.
        • Robotham J.L.
        Transient analysis of cardiopulmonary interactions. II. Systolic events.
        J Appl Physiol. 1988; 64: 1518-1526
        • Peters J.
        • Kindred M.K.
        • Robotham J.L.
        Transient analysis of cardiopulmonary interactions. I. Diastolic events.
        J Appl Physiol. 1988; 64: 1506-1517
        • Apitzsch H.
        • Olthoff D.
        • Lange S.
        • Thiem V.
        A method for continuous monitoring of total peripheral and pulmonary vascular resistance in high risk cardiac patients.
        Anaesthesiol Reanim. 1999; 24: 116-119
        • Honda S.
        • Sunagawa H.
        • Tasaki H.
        • Hirose M.
        • Fukushige J.
        Correlation between pulmonary vascular resistance and pulmonary arterial diastolic pressure in congenital heart diseases with left to right shunt.
        Jpn Heart J. 1975; 16: 629-638
        • Harvey R.M.
        • Enson Y.
        • Ferrer M.I.
        A reconsideration of the origins of pulmonary hypertension.
        Chest. 1971; 59: 82-94
        • Denault A.Y.
        • Gasior T.A.
        • Gorcsan 3rd, J.
        • Mandarino W.A.
        • Deneault L.G.
        • Pinsky M.R.
        Determinants of aortic pressure variation during positive-pressure ventilation in man.
        Chest. 1999; 116: 176-186
        • Robotham J.L.
        • Cherry D.
        • Mitzner W.
        • Rabson J.L.
        • Lixfeld W.
        • Bromberger-Barnea B.
        A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation.
        Crit Care Med. 1983; 11: 783-793
        • Cournand A.
        • Motley H.L.
        • Werko L.
        • Richards D.W.
        Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man.
        Am J Physiol. 1947; 152: 162-174
        • Stevens P.M.
        Assessment of acute respiratory failure: cardiac versus pulmonary causes.
        Chest. 1975; 67: 1-2
        • Kaltman A.J.
        • Herbert W.H.
        • Conroy R.J.
        • Kossmann C.E.
        The gradient in pressure across the pulmonary vascular bed during diastole.
        Circulation. 1966; 34: 377-384
        • Fowler Jr., N.O.
        • Westcott R.N.
        • Scott R.C.
        Pulmonary artery diastolic pressure: its relationship to pulmonary arteriolar resistance and pulmonary capillary pressure.
        J Clin Invest. 1952; 31: 72-79
        • Laskey W.K.
        • Ferrari V.A.
        • Palevsky H.I.
        • Kussmaul W.G.
        Pulmonary artery hemodynamics in primary pulmonary hypertension.
        J Am Coll Cardiol. 1993; 21: 406-412
        • Gerges C.
        • Gerges M.
        • Lang M.B.
        • et al.
        Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in “out-of-proportion” pulmonary hypertension.
        Chest. 2013; 143: 758-766
        • Tyberg J.V.
        • Grant D.A.
        • Kingma I.
        • et al.
        Effects of positive intrathoracic pressure on pulmonary and systemic hemodynamics.
        Respir Physiol. 2000; 119: 171-179
        • Pinsky M.R.
        Cardiovascular issues in respiratory care.
        Chest. 2005; 128: 592S-597S
        • Haluszka J.
        • Chartrand D.A.
        • Grassino A.E.
        • Milic-Emili J.
        Intrinsic PEEP and arterial PCO2 in stable patients with chronic obstructive pulmonary disease.
        Am Rev Respir Dis. 1990; 141: 1194-1197
        • Dal Vecchio L.
        • Polese G.
        • Poggi R.
        • Rossi A.
        “Intrinsic” positive end-expiratory pressure in stable patients with chronic obstructive pulmonary disease.
        Eur Respir J. 1990; 3: 74-80
        • Vieillard-Baron A.
        • Loubieres Y.
        • Schmitt J.M.
        • Page B.
        • Dubourg O.
        • Jardin F.
        Cyclic changes in right ventricular output impedance during mechanical ventilation.
        J Appl Physiol. 1999; 87: 1644-1650
        • Boerrigter B.
        • Trip P.
        • Bogaard H.J.
        • et al.
        Right atrial pressure affects the interaction between lung mechanics and right ventricular function in spontaneously breathing COPD patients.
        PLoS One. 2012; 7: e30208
        • De Backer D.
        • Heenen S.
        • Piagnerelli M.
        • Koch M.
        • Vincent J.L.
        Pulse pressure variations to predict fluid responsiveness: influence of tidal volume.
        Intensive Care Med. 2005; 31: 517-523
        • Michard F.
        • Teboul J.L.
        Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence.
        Chest. 2002; 121: 2000-2008
        • Dart A.M.
        • Kingwell B.A.
        Pulse pressure – a review of mechanisms and clinical relevance.
        J Am Coll Cardiol. 2001; 37: 975-984
        • Morgan B.C.
        • Martin W.E.
        • Hornbein T.F.
        • Crawford E.W.
        • Guntheroth W.G.
        Hemodynamic effects of intermittent positive pressure respiration.
        Anesthesiology. 1966; 27: 584-590